Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Partial Visual-Semantic Embedding: Fashion Intelligence System with Sensitive Part-by-Part Learning (2211.06688v1)

Published 12 Nov 2022 in cs.CV

Abstract: In this study, we propose a technology called the Fashion Intelligence System based on the visual-semantic embedding (VSE) model to quantify abstract and complex expressions unique to fashion, such as ''casual,'' ''adult-casual,'' and ''office-casual,'' and to support users' understanding of fashion. However, the existing VSE model does not support the situations in which the image is composed of multiple parts such as hair, tops, pants, skirts, and shoes. We propose partial VSE, which enables sensitive learning for each part of the fashion coordinates. The proposed model partially learns embedded representations. This helps retain the various existing practical functionalities and enables image-retrieval tasks in which changes are made only to the specified parts and image reordering tasks that focus on the specified parts. This was not possible with conventional models. Based on both the qualitative and quantitative evaluation experiments, we show that the proposed model is superior to conventional models without increasing the computational complexity.

Summary

We haven't generated a summary for this paper yet.