Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bounding the Mostar index (2211.06682v1)

Published 12 Nov 2022 in math.CO

Abstract: Do\v{s}li\'{c} et al. defined the Mostar index of a graph $G$ as $Mo(G)=\sum\limits_{uv\in E(G)}|n_G(u,v)-n_G(v,u)|$, where, for an edge $uv$ of $G$, the term $n_G(u,v)$ denotes the number of vertices of $G$ that have a smaller distance in $G$ to $u$ than to $v$. They conjectured that $Mo(G)\leq 0.\overline{148}n3$ for every graph $G$ of order $n$. As a natural upper bound on the Mostar index, Geneson and Tsai implicitly consider the parameter $Mo\star(G)=\sum\limits_{uv\in E(G)}\big(n-\min{ d_G(u),d_G(v)}\big)$. For a graph $G$ of order $n$, they show that $Mo\star(G)\leq \frac{5}{24}(1+o(1))n3$. We improve this bound to $Mo\star(G)\leq \left(\frac{2}{\sqrt{3}}-1\right)n3$, which is best possible up to terms of lower order. Furthermore, we show that $Mo\star(G)\leq \left(2\left(\frac{\Delta}{n}\right)2+\left(\frac{\Delta}{n}\right)-2\left(\frac{\Delta}{n}\right)\sqrt{\left(\frac{\Delta}{n}\right)2+\left(\frac{\Delta}{n}\right)}\right)n3$ provided that $G$ has maximum degree $\Delta$.

Citations (4)

Summary

We haven't generated a summary for this paper yet.