Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Empirical Risk Minimization with Relative Entropy Regularization (2211.06617v5)

Published 12 Nov 2022 in math.ST, cs.IT, cs.LG, math.IT, and stat.TH

Abstract: The empirical risk minimization (ERM) problem with relative entropy regularization (ERM-RER) is investigated under the assumption that the reference measure is a $\sigma$-finite measure, and not necessarily a probability measure. Under this assumption, which leads to a generalization of the ERM-RER problem allowing a larger degree of flexibility for incorporating prior knowledge, numerous relevant properties are stated. Among these properties, the solution to this problem, if it exists, is shown to be a unique probability measure, mutually absolutely continuous with the reference measure. Such a solution exhibits a probably-approximately-correct guarantee for the ERM problem independently of whether the latter possesses a solution. For a fixed dataset and under a specific condition, the empirical risk is shown to be a sub-Gaussian random variable when the models are sampled from the solution to the ERM-RER problem. The generalization capabilities of the solution to the ERM-RER problem (the Gibbs algorithm) are studied via the sensitivity of the expected empirical risk to deviations from such a solution towards alternative probability measures. Finally, an interesting connection between sensitivity, generalization error, and lautum information is established.

Citations (11)

Summary

We haven't generated a summary for this paper yet.