Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic Network Calculus with Localized Application of Martingales (2211.05657v2)

Published 10 Nov 2022 in cs.PF and math.PR

Abstract: Stochastic Network Calculus is a probabilistic method to compute performance bounds in networks, such as end-to-end delays. It relies on the analysis of stochastic processes using formalism of (Deterministic) Network Calculus. However, unlike the deterministic theory, the computed bounds are usually very loose compared to the simulation. This is mainly due to the intensive use of the Boole's inequality. On the other hand, analyses based on martingales can achieve tight bounds, but until now, they have not been applied to sequences of servers. In this paper, we improve the accuracy of Stochastic Network Calculus by combining this martingale analysis with a recent Stochastic Network Calculus results based on the Pay-Multiplexing-Only-Once property, well-known from the Deterministic Network calculus. We exhibit a non-trivial class of networks that can benefit from this analysis and compare our bounds with simulation.

Summary

We haven't generated a summary for this paper yet.