Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Galois Hull Dimensions of Gabidulin Codes (2211.05068v1)

Published 9 Nov 2022 in cs.IT and math.IT

Abstract: For a prime power $q$, an integer $m$ and $0\leq e\leq m-1$ we study the $e$-Galois hull dimension of Gabidulin codes $G_k(\boldsymbol{\alpha})$ of length $m$ and dimension $k$ over $\mathbb{F}{qm}$. Using a self-dual basis $\boldsymbol{\alpha}$ of $\mathbb{F}{qm}$ over $\mathbb{F}_q$, we first explicitly compute the hull dimension of $G_k(\boldsymbol{\alpha})$. Then a necessary and sufficient condition of $G_k(\boldsymbol{\alpha})$ to be linear complementary dual (LCD), self-orthogonal and self-dual will be provided. We prove the existence of $e$-Galois (where $e=\frac{m}{2}$) self-dual Gabidulin codes of length $m$ for even $q$, which is in contrast to the known fact that Euclidean self-dual Gabidulin codes do not exist for even $q$. As an application, we construct two classes of entangled-assisted quantum error-correcting codes (EAQECCs) whose parameters have more flexibility compared to known codes in this context.

Citations (2)

Summary

We haven't generated a summary for this paper yet.