Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Frozen Gaussian Sampling for Scalar Wave Equations (2211.04829v2)

Published 9 Nov 2022 in math.NA and cs.NA

Abstract: In this article, we introduce the frozen Gaussian sampling (FGS) algorithm to solve the scalar wave equation in the high-frequency regime. The FGS algorithm is a Monte Carlo sampling strategy based on the frozen Gaussian approximation, which greatly reduces the computation workload in the wave propagation and reconstruction. In this work, we propose feasible and detailed procedures to implement the FGS algorithm to approximate scalar wave equations with Gaussian initial conditions and WKB initial conditions respectively. For both initial data cases, we rigorously analyze the error of applying this algorithm to wave equations of dimensionality $d \geq 3$. In Gaussian initial data cases, we prove that the sampling error due to the Monte Carlo method is independent of the typical wave number. We also derive a quantitative bound of the sampling error in WKB initial data cases. Finally, we validate the performance of the FGS and the theoretical estimates about the sampling error through various numerical examples, which include using the FGS to solve wave equations with both Gaussian and WKB initial data of dimensionality $d = 1, 2$, and $3$.

Summary

We haven't generated a summary for this paper yet.