Variation and oscillation operators on weighted Morrey-Campanato spaces in the Schrödinger setting (2211.04819v1)
Abstract: Let $\mathcal{L}$ be the Schr\"odinger operator with potential $V$, that is, $\mathcal L=-\Delta+V$, where it is assumed that $V$ satisfies a reverse H\"older inequality. We consider weighted Morrey-Campanato spaces $BMO_{\mathcal L,w}\alpha (\mathbb Rd)$ and $BLO_{L,w}\alpha (\mathbb Rd)$ in the Schr\"odinger setting. We prove that the variation operator $V_\sigma ({T_t}{t>0})$, $\sigma>2$, and the oscillation operator $O({T_t}{t>0}, {t_j}{j\in \mathbb Z})$, where $t_j<t{j+1}$, $j\in \mathbb Z$, $\lim_{j\rightarrow +\infty}t_j=+\infty$ and $\lim_{j\rightarrow -\infty} t_j=0$, being $T_t=tk\partial_tk e{-t\mathcal L}$, $t>0$, with $k\in \mathbb N$, are bounded operators from $BMO_{\mathcal L,w}\alpha (\mathbb Rd)$ into $BLO_{\mathcal L,w}\alpha (\mathbb Rd)$. We also establish the same property for the maximal operators defined by ${tk\partial_tk e{-t\mathcal L}}_{t>0}$, $k\in \mathbb N$.