Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bit-depth enhancement detection for compressed video (2211.04799v1)

Published 9 Nov 2022 in cs.CV, cs.GR, and eess.IV

Abstract: In recent years, display intensity and contrast have increased considerably. Many displays support high dynamic range (HDR) and 10-bit color depth. Since high bit-depth is an emerging technology, video content is still largely shot and transmitted with a bit depth of 8 bits or less per color component. Insufficient bit-depths produce distortions called false contours or banding, and they are visible on high contrast screens. To deal with such distortions, researchers have proposed algorithms for bit-depth enhancement (dequantization). Such techniques convert videos with low bit-depth (LBD) to videos with high bit-depth (HBD). The quality of converted LBD video, however, is usually lower than that of the original HBD video, and many consumers prefer to keep the original HBD versions. In this paper, we propose an algorithm to determine whether a video has undergone conversion before compression. This problem is complex; it involves detecting outcomes of different dequantization algorithms in the presence of compression that strongly affects the least-significant bits (LSBs) in the video frames. Our algorithm can detect bit-depth enhancement and demonstrates good generalization capability, as it is able to determine whether a video has undergone processing by dequantization algorithms absent from the training dataset.

Citations (1)

Summary

We haven't generated a summary for this paper yet.