Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 38 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 466 tok/s Pro
Kimi K2 243 tok/s Pro
2000 character limit reached

Spline Estimation of Functional Principal Components via Manifold Conjugate Gradient Algorithm (2211.04784v1)

Published 9 Nov 2022 in stat.ME and stat.CO

Abstract: Functional principal component analysis has become the most important dimension reduction technique in functional data analysis. Based on B-spline approximation, functional principal components (FPCs) can be efficiently estimated by the expectation-maximization (EM) and the geometric restricted maximum likelihood (REML) algorithms under the strong assumption of Gaussianity on the principal component scores and observational errors. When computing the solution, the EM algorithm does not exploit the underlying geometric manifold structure, while the performance of REML is known to be unstable. In this article, we propose a conjugate gradient algorithm over the product manifold to estimate FPCs. This algorithm exploits the manifold geometry structure of the overall parameter space, thus improving its search efficiency and estimation accuracy. In addition, a distribution-free interpretation of the loss function is provided from the viewpoint of matrix Bregman divergence, which explains why the proposed method works well under general distribution settings. We also show that a roughness penalization can be easily incorporated into our algorithm with a potentially better fit. The appealing numerical performance of the proposed method is demonstrated by simulation studies and the analysis of a Type Ia supernova light curve dataset.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.