Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hyperbolic one-relator groups (2211.04371v1)

Published 8 Nov 2022 in math.GR

Abstract: We introduce two families of two-generator one-relator groups called primitive extension groups and show that a one-relator group is hyperbolic if its primitive extension subgroups are hyperbolic. This reduces the problem of characterising hyperbolic one-relator groups to characterising hyperbolic primitive extension groups. These new groups moreover admit explicit decompositions as graphs of free groups with adjoined roots. In order to obtain this result, we characterise $2$-free one-relator groups with exceptional intersection in terms of Christoffel words, show that hyperbolic one-relator groups have quasi-convex Magnus subgroups and build upon the one-relator tower machinery developed in the authors previous article.

Summary

We haven't generated a summary for this paper yet.