Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamical Transition of Operator Size Growth in Quantum Systems Embedded in an Environment (2211.03535v2)

Published 7 Nov 2022 in quant-ph, cond-mat.quant-gas, cond-mat.stat-mech, cond-mat.str-el, and hep-th

Abstract: In closed generic many-body systems, unitary evolution disperses local quantum information into highly non-local objects, resulting in thermalization. Such a process is called information scrambling, whose swiftness is quantified by the operator size growth. However, for quantum systems embedded in an environment, how the couplings to the environment affect the process of information scrambling quests revelation. Here we predict a dynamical transition in quantum systems with all-to-all interactions accompanied by an environment, which separates two phases. In the dissipative phase, information scrambling halts as the operator size decays with time, while in the scrambling phase, dispersion of information persists and the operator size grows and saturates to an $O(N)$ value in the long-time limit with $N$ the number of degrees of freedom of the systems. The transition is driven by the competition between the system intrinsic and environment propelled scramblings and the environment induced dissipation. Our prediction is derived from a general argument based on epidemiological models and demonstrated analytically via solvable Brownian SYK models. We provide further evidence which suggests that the transition is generic to quantum chaotic systems when coupled to an environment. Our study sheds light on the fundamental behavior of quantum systems in the presence of an environment.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. P. Hayden and J. Preskill, JHEP 09, 120 (2007), arXiv:0708.4025 [hep-th] .
  2. Y. Sekino and L. Susskind, JHEP 10, 065 (2008), arXiv:0808.2096 [hep-th] .
  3. S. H. Shenker and D. Stanford, JHEP 05, 132 (2015), arXiv:1412.6087 [hep-th] .
  4. M. Srednicki, Phys. Rev. E 50, 888 (1994).
  5. J. M. Deutsch, Phys. Rev. A 43, 2046 (1991).
  6. N. Hunter-Jones,   (2018), arXiv:1812.08219 [quant-ph] .
  7. C.-F. Chen and A. Lucas, Commun. Math. Phys. 385, 1273 (2021), arXiv:1905.03682 [math-ph] .
  8. A. Lucas, Phys. Rev. Lett. 122, 216601 (2019).
  9. A. Lucas and A. Osborne, J. Math. Phys. 61, 122301 (2020), arXiv:2007.07165 [hep-th] .
  10. C. Yin and A. Lucas, Phys. Rev. A 103, 042414 (2021), arXiv:2010.06592 [cond-mat.str-el] .
  11. T. Zhou and B. Swingle,   (2021), arXiv:2112.01562 [quant-ph] .
  12. S. Yao, In Preparation .
  13. P. Zhang and Y. Gu, In Preparation .
  14. F. D. Domínguez and G. A. Álvarez, Phys. Rev. A 104, 062406 (2021), arXiv:2107.03870 [quant-ph] .
  15. X. Mi et al., Science 374, abg5029 (2021), arXiv:2101.08870 [quant-ph] .
  16. T. Schuster and N. Y. Yao,   (2022), arXiv:2208.12272 [quant-ph] .
  17. A. Kitaev, “A simple model of quantum holography,”  (2015).
  18. J. Maldacena and D. Stanford, Phys. Rev. D 94, 106002 (2016), arXiv:1604.07818 [hep-th] .
  19. A. Kitaev and S. J. Suh, JHEP 05, 183 (2018), arXiv:1711.08467 [hep-th] .
  20. P. Zhang, Phys. Rev. B 100, 245104 (2019), arXiv:1909.10637 [cond-mat.str-el] .
  21. H. M. Wiseman and G. J. Milburn, Quantum measurement and control (Cambridge university press, 2009).
  22. X.-L. Qi and A. Streicher, JHEP 08, 012 (2019), arXiv:1810.11958 [hep-th] .
  23. T. Zhou and X. Chen, Physical Review E 99 (2019), 10.1103/physreve.99.052212.
  24. B. Yoshida and A. Kitaev,   (2017), arXiv:1710.03363 [hep-th] .
  25. L. Susskind and Y. Zhao, Phys. Rev. D 98, 046016 (2018), arXiv:1707.04354 [hep-th] .
  26. P. Gao and H. Liu, JHEP 10, 048 (2019), arXiv:1810.01444 [hep-th] .
  27. P. Gao and D. L. Jafferis, JHEP 07, 097 (2021), arXiv:1911.07416 [hep-th] .
  28. M. J. Gullans and D. A. Huse, Phys. Rev. X 10, 041020 (2020), arXiv:1905.05195 [quant-ph] .
  29. Y. Gu and A. Kitaev, JHEP 02, 075 (2019), arXiv:1812.00120 [hep-th] .
Citations (21)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com