Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rotation-equivariant Graph Neural Networks for Learning Glassy Liquids Representations (2211.03226v3)

Published 6 Nov 2022 in cond-mat.soft, cond-mat.dis-nn, and cs.LG

Abstract: The difficult problem of relating the static structure of glassy liquids and their dynamics is a good target for Machine Learning, an approach which excels at finding complex patterns hidden in data. Indeed, this approach is currently a hot topic in the glassy liquids community, where the state of the art consists in Graph Neural Networks (GNNs), which have great expressive power but are heavy models and lack interpretability. Inspired by recent advances in the field of Machine Learning group-equivariant representations, we build a GNN that learns a robust representation of the glass' static structure by constraining it to preserve the roto-translation (SE(3)) equivariance. We show that this constraint significantly improves the predictive power at comparable or reduced number of parameters but most importantly, improves the ability to generalize to unseen temperatures. While remaining a Deep network, our model has improved interpretability compared to other GNNs, as the action of our basic convolution layer relates directly to well-known rotation-invariant expert features. Through transfer-learning experiments displaying unprecedented performance, we demonstrate that our network learns a robust representation, which allows us to push forward the idea of a learned structural order parameter for glasses.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. H. Tong and H. Tanaka, Structural order as a genuine control parameter of dynamics in simple glass formers, Nature Communications 10, 5596 (2019).
  2. S. Golde, T. Palberg, and H. J. Schöpe, Correlation between dynamical and structural heterogeneities in colloidal hard-sphere suspensions, Nature Physics 12, 712 (2016).
  3. H. Tong and H. Tanaka, Revealing Hidden Structural Order Controlling Both Fast and Slow Glassy Dynamics in Supercooled Liquids, Physical Review X 8, 011041 (2018).
  4. M. Lerbinger, Local shear rearrangements in glassy systems: from micromechanics to structural relaxation in supercooled liquids, Ph.D. thesis, Université Paris sciences et lettres (2020).
  5. A. S. Keys, C. R. Iacovella, and S. C. Glotzer, Characterizing Structure Through Shape Matching and Applications to Self-Assembly, Annual Review of Condensed Matter Physics 2, 263 (2011).
  6. C. P. Royall and W. Kob, Locally favoured structures and dynamic length scales in a simple glass-former, Journal of Statistical Mechanics: Theory and Experiment 2017, 10.1088/1742-5468/aa4e92 (2017), arXiv: 1611.03314 Publisher: IOP Publishing.
  7. F. Turci, G. Tarjus, and C. P. Royall, From Glass Formation to Icosahedral Ordering by Curving Three-Dimensional Space, Physical Review Letters 118, 1 (2017), arXiv: 1609.03044.
  8. C. P. Royall, F. Turci, and T. Speck, Dynamical phase transitions and their relation to structural and thermodynamic aspects of glass physics, The Journal of Chemical Physics 153 (2020).
  9. J. Paret, R. L. Jack, and D. Coslovich, Assessing the structural heterogeneity of supercooled liquids through community inference, The Journal of Chemical Physics 152, 144502 (2020).
  10. D. Coslovich, R. L. Jack, and J. Paret, Dimensionality reduction of local structure in glassy binary mixtures, The Journal of Chemical Physics 157 (2022).
  11. I. Tah, S. A. Ridout, and A. J. Liu, Fragility in glassy liquids: A structural approach based on machine learning, The Journal of Chemical Physics 157 (2022).
  12. E. Boattini, F. Smallenburg, and L. Filion, Averaging local structure to predict the dynamic propensity in supercooled liquids, Physical Review Letters 127, 088007 (2021), arXiv: 2105.05921.
  13. G. Jung, G. Biroli, and L. Berthier, Predicting dynamic heterogeneity in glass-forming liquids by physics-inspired machine learning, Physical Review Letters 130, 238202 (2023a).
  14. R. M. Alkemade, F. Smallenburg, and L. Filion, Improving the prediction of glassy dynamics by pinpointing the local cage,   (2023), arXiv:2301.13106 [cond-mat].
  15. X. Jiang, Z. Tian, and K. Li, Geometry-enhanced graph neural network for glassy dynamics prediction,   (2022), arXiv:2211.12832 [cond-mat].
  16. D. Ruhe, J. Brandstetter, and P. Forré, Clifford group equivariant neural networks, arXiv preprint arXiv:2305.11141  (2023a).
  17. L. Berthier and R. L. Jack, Structure and dynamics in glass-formers: predictability at large length scales, Physical Review E 76, 041509 (2007).
  18. R. Kondor, Z. Lin, and S. Trivedi, Clebsch–gordan nets: a fully fourier space spherical convolutional neural network, Advances in Neural Information Processing Systems 31 (2018).
  19. S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, in International conference on machine learning (pmlr, 2015) pp. 448–456.
  20. Y.-L. Liao and T. Smidt, Equiformer: Equivariant graph attention transformer for 3d atomistic graphs, in The Eleventh International Conference on Learning Representations (2022).
  21. C. Scalliet, B. Guiselin, and L. Berthier, Thirty milliseconds in the life of a supercooled liquid, Physical Review X 12, 041028 (2022).
  22. D. Coslovich and G. Pastore, Understanding fragility in supercooled Lennard-Jones mixtures. I. Locally preferred structures, Journal of Chemical Physics 127, 10.1063/1.2773716 (2007), arXiv: 0705.0626 ISBN: 0021-9606 (Print)\r0021-9606 (Linking).
  23. Y. Bengio, Deep learning of representations for unsupervised and transfer learning, in Proceedings of ICML workshop on unsupervised and transfer learning (JMLR Workshop and Conference Proceedings, 2012) pp. 17–36.
  24. J. K. Gupta and J. Brandstetter, Towards multi-spatiotemporal-scale generalized pde modeling, arXiv preprint arXiv:2209.15616  (2022).
  25. N. Oyama, S. Koyama, and T. Kawasaki, What do deep neural networks find in disordered structures of glasses?, Frontiers in Physics 10, 1320 (2023).
  26. M. Fey and J. E. Lenssen, Fast graph representation learning with PyTorch Geometric, in ICLR Workshop on Representation Learning on Graphs and Manifolds (2019).
Citations (5)

Summary

We haven't generated a summary for this paper yet.