Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multiband linear cellular automata and endomorphisms of algebraic vector groups (2211.02866v2)

Published 5 Nov 2022 in math.DS, cs.FL, math.AG, math.NT, and nlin.CG

Abstract: We propose a correspondence between certain multiband linear cellular automata - models of computation widely used in the description of physical phenomena - and endomorphisms of certain algebraic unipotent groups over finite fields. The correspondence is based on the construction of a universal element specialising to a normal generator for any finite field. We use this correspondence to deduce new results concerning the temporal dynamics of such automata, using our prior, purely algebraic, study of the endomorphism ring of vector groups. These produce 'for free' a formula for the number of fixed points of the $n$-iterate in terms of the $p$-adic valuation of $n$, a dichotomy for the Artin-Mazur dynamical zeta function, and an asymptotic formula for the number of periodic orbits. Since multiband linear cellular automata simulate higher order linear automata (in which states depend on finitely many prior temporal states, not just the direct predecessor), the results apply equally well to that class.

Summary

We haven't generated a summary for this paper yet.