Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The functor $\check{\mathcal{F}}^G_P$ at the level of $K_0$ (2211.02761v1)

Published 4 Nov 2022 in math.RT

Abstract: Let $G$ be a $p$-adic Lie group with reductive Lie algebra $\mathfrak{g}$. Denote by $D(G)$ the locally analytic distribution algebra of $G$. Orlik-Strauch and Agrawal-Strauch have studied certain exact functors defined on various categories of $\mathfrak{g}$-representations with image in the category of locally analytic $G$-representations or $D(G)$-modules. In this paper we prove that for suitably defined categories of $D(G)$-modules, this functor gives rise to injective homomorphisms at the level of Grothendieck groups. We also explain how this functor interacts with translation functors at the level of Grothendieck groups.

Summary

We haven't generated a summary for this paper yet.