Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Adversarial Robustness to Sensitivity and Invariance Attacks with Deep Metric Learning (2211.02468v1)

Published 4 Nov 2022 in cs.LG, cs.AI, and cs.CR

Abstract: Intentionally crafted adversarial samples have effectively exploited weaknesses in deep neural networks. A standard method in adversarial robustness assumes a framework to defend against samples crafted by minimally perturbing a sample such that its corresponding model output changes. These sensitivity attacks exploit the model's sensitivity toward task-irrelevant features. Another form of adversarial sample can be crafted via invariance attacks, which exploit the model underestimating the importance of relevant features. Previous literature has indicated a tradeoff in defending against both attack types within a strictly L_p bounded defense. To promote robustness toward both types of attacks beyond Euclidean distance metrics, we use metric learning to frame adversarial regularization as an optimal transport problem. Our preliminary results indicate that regularizing over invariant perturbations in our framework improves both invariant and sensitivity defense.

Summary

We haven't generated a summary for this paper yet.