Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SDRTV-to-HDRTV Conversion via Spatial-Temporal Feature Fusion (2211.02297v1)

Published 4 Nov 2022 in eess.IV

Abstract: HDR(High Dynamic Range) video can reproduce realistic scenes more realistically, with a wider gamut and broader brightness range. HDR video resources are still scarce, and most videos are still stored in SDR (Standard Dynamic Range) format. Therefore, SDRTV-to-HDRTV Conversion (SDR video to HDR video) can significantly enhance the user's video viewing experience. Since the correlation between adjacent video frames is very high, the method utilizing the information of multiple frames can improve the quality of the converted HDRTV. Therefore, we propose a multi-frame fusion neural network \textbf{DSLNet} for SDRTV to HDRTV conversion. We first propose a dynamic spatial-temporal feature alignment module \textbf{DMFA}, which can align and fuse multi-frame. Then a novel spatial-temporal feature modulation module \textbf{STFM}, STFM extracts spatial-temporal information of adjacent frames for more accurate feature modulation. Finally, we design a quality enhancement module \textbf{LKQE} with large kernels, which can enhance the quality of generated HDR videos. To evaluate the performance of the proposed method, we construct a corresponding multi-frame dataset using HDR video of the HDR10 standard to conduct a comprehensive evaluation of different methods. The experimental results show that our method obtains state-of-the-art performance. The dataset and code will be released.

Citations (4)

Summary

We haven't generated a summary for this paper yet.