Automated Vehicle Highway Merging: Motion Planning via Adaptive Interactive Mixed-Integer MPC (2211.02225v1)
Abstract: A new motion planning framework for automated highway merging is presented in this paper. To plan the merge and predict the motion of the neighboring vehicle, the ego automated vehicle solves a joint optimization of both vehicle costs over a receding horizon. The non-convex nature of feasible regions and lane discipline is handled by introducing integer decision variables resulting in a mixed integer quadratic programming (MIQP) formulation of the model predictive control (MPC) problem. Furthermore, the ego uses an inverse optimal control approach to impute the weights of neighboring vehicle cost by observing the neighbor's recent motion and adapts its solution accordingly. We call this adaptive interactive mixed integer MPC (aiMPC). Simulation results show the effectiveness of the proposed framework.