Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to Rank Graph-based Application Objects on Heterogeneous Memories (2211.02195v1)

Published 4 Nov 2022 in cs.LG

Abstract: Persistent Memory (PMEM), also known as Non-Volatile Memory (NVM), can deliver higher density and lower cost per bit when compared with DRAM. Its main drawback is that it is typically slower than DRAM. On the other hand, DRAM has scalability problems due to its cost and energy consumption. Soon, PMEM will likely coexist with DRAM in computer systems but the biggest challenge is to know which data to allocate on each type of memory. This paper describes a methodology for identifying and characterizing application objects that have the most influence on the application's performance using Intel Optane DC Persistent Memory. In the first part of our work, we built a tool that automates the profiling and analysis of application objects. In the second part, we build a machine learning model to predict the most critical object within large-scale graph-based applications. Our results show that using isolated features does not bring the same benefit compared to using a carefully chosen set of features. By performing data placement using our predictive model, we can reduce the execution time degradation by 12\% (average) and 30\% (max) when compared to the baseline's approach based on LLC misses indicator.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Diego Moura (2 papers)
  2. Vinicius Petrucci (6 papers)
  3. Daniel Mosse (4 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.