Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Can Querying for Bias Leak Protected Attributes? Achieving Privacy With Smooth Sensitivity (2211.02139v2)

Published 3 Nov 2022 in cs.LG, cs.AI, cs.CR, and cs.CY

Abstract: Existing regulations prohibit model developers from accessing protected attributes (gender, race, etc.), often resulting in fairness assessments on populations without knowing their protected groups. In such scenarios, institutions often adopt a separation between the model developers (who train models with no access to the protected attributes) and a compliance team (who may have access to the entire dataset for auditing purposes). However, the model developers might be allowed to test their models for bias by querying the compliance team for group fairness metrics. In this paper, we first demonstrate that simply querying for fairness metrics, such as statistical parity and equalized odds can leak the protected attributes of individuals to the model developers. We demonstrate that there always exist strategies by which the model developers can identify the protected attribute of a targeted individual in the test dataset from just a single query. In particular, we show that one can reconstruct the protected attributes of all the individuals from O(Nk \log( n /Nk)) queries when Nk<<n using techniques from compressed sensing (n: size of the test dataset, Nk: size of smallest group). Our results pose an interesting debate in algorithmic fairness: should querying for fairness metrics be viewed as a neutral-valued solution to ensure compliance with regulations? Or, does it constitute a violation of regulations and privacy if the number of queries answered is enough for the model developers to identify the protected attributes of specific individuals? To address this supposed violation, we also propose Attribute-Conceal, a novel technique that achieves differential privacy by calibrating noise to the smooth sensitivity of our bias query, outperforming naive techniques such as the Laplace mechanism. We also include experimental results on the Adult dataset and synthetic data.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Faisal Hamman (9 papers)
  2. Jiahao Chen (89 papers)
  3. Sanghamitra Dutta (34 papers)
Citations (7)