Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Batch Normalization for Training Data with Heterogeneous Features (2211.02050v2)

Published 3 Nov 2022 in cs.LG

Abstract: Batch Normalization (BN) is an important preprocessing step to many deep learning applications. Since it is a data-dependent process, for some homogeneous datasets it is a redundant or even a performance-degrading process. In this paper, we propose an early-stage feasibility assessment method for estimating the benefits of applying BN on the given data batches. The proposed method uses a novel threshold-based approach to classify the training data batches into two sets according to their need for normalization. The need for normalization is decided based on the feature heterogeneity of the considered batch. The proposed approach is a pre-training processing, which implies no training overhead. The evaluation results show that the proposed approach achieves better performance mostly in small batch sizes than the traditional BN using MNIST, Fashion-MNIST, CIFAR-10, and CIFAR-100 datasets. Additionally, the network stability is increased by reducing the occurrence of internal variable transformation.

Citations (3)

Summary

We haven't generated a summary for this paper yet.