Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transformers on Multilingual Clause-Level Morphology (2211.01736v2)

Published 3 Nov 2022 in cs.CL, cs.AI, and cs.LG

Abstract: This paper describes our winning systems in MRL: The 1st Shared Task on Multilingual Clause-level Morphology (EMNLP 2022 Workshop) designed by KUIS AI NLP team. We present our work for all three parts of the shared task: inflection, reinflection, and analysis. We mainly explore transformers with two approaches: (i) training models from scratch in combination with data augmentation, and (ii) transfer learning with prefix-tuning at multilingual morphological tasks. Data augmentation significantly improves performance for most languages in the inflection and reinflection tasks. On the other hand, Prefix-tuning on a pre-trained mGPT model helps us to adapt analysis tasks in low-data and multilingual settings. While transformer architectures with data augmentation achieved the most promising results for inflection and reinflection tasks, prefix-tuning on mGPT received the highest results for the analysis task. Our systems received 1st place in all three tasks in MRL 2022.

Citations (4)

Summary

We haven't generated a summary for this paper yet.