Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence of the Inexact Langevin Algorithm and Score-based Generative Models in KL Divergence (2211.01512v2)

Published 2 Nov 2022 in cs.LG, math.ST, and stat.TH

Abstract: We study the Inexact Langevin Dynamics (ILD), Inexact Langevin Algorithm (ILA), and Score-based Generative Modeling (SGM) when utilizing estimated score functions for sampling. Our focus lies in establishing stable biased convergence guarantees in terms of the Kullback-Leibler (KL) divergence. To achieve these guarantees, we impose two key assumptions: 1) the target distribution satisfies the log-Sobolev inequality (LSI), and 2) the score estimator exhibits a bounded Moment Generating Function (MGF) error. Notably, the MGF error assumption we adopt is more lenient compared to the $L\infty$ error assumption used in existing literature. However, it is stronger than the $L2$ error assumption utilized in recent works, which often leads to unstable bounds. We explore the question of how to obtain a provably accurate score estimator that satisfies the MGF error assumption. Specifically, we demonstrate that a simple estimator based on kernel density estimation fulfills the MGF error assumption for sub-Gaussian target distribution, at the population level.

Citations (9)

Summary

We haven't generated a summary for this paper yet.