Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dual Generator Offline Reinforcement Learning (2211.01471v1)

Published 2 Nov 2022 in cs.LG and cs.AI

Abstract: In offline RL, constraining the learned policy to remain close to the data is essential to prevent the policy from outputting out-of-distribution (OOD) actions with erroneously overestimated values. In principle, generative adversarial networks (GAN) can provide an elegant solution to do so, with the discriminator directly providing a probability that quantifies distributional shift. However, in practice, GAN-based offline RL methods have not performed as well as alternative approaches, perhaps because the generator is trained to both fool the discriminator and maximize return -- two objectives that can be at odds with each other. In this paper, we show that the issue of conflicting objectives can be resolved by training two generators: one that maximizes return, with the other capturing the ``remainder'' of the data distribution in the offline dataset, such that the mixture of the two is close to the behavior policy. We show that not only does having two generators enable an effective GAN-based offline RL method, but also approximates a support constraint, where the policy does not need to match the entire data distribution, but only the slice of the data that leads to high long term performance. We name our method DASCO, for Dual-Generator Adversarial Support Constrained Offline RL. On benchmark tasks that require learning from sub-optimal data, DASCO significantly outperforms prior methods that enforce distribution constraint.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Quan Vuong (41 papers)
  2. Aviral Kumar (74 papers)
  3. Sergey Levine (531 papers)
  4. Yevgen Chebotar (28 papers)
Citations (1)