QuACK: Accelerating Gradient-Based Quantum Optimization with Koopman Operator Learning (2211.01365v3)
Abstract: Quantum optimization, a key application of quantum computing, has traditionally been stymied by the linearly increasing complexity of gradient calculations with an increasing number of parameters. This work bridges the gap between Koopman operator theory, which has found utility in applications because it allows for a linear representation of nonlinear dynamical systems, and natural gradient methods in quantum optimization, leading to a significant acceleration of gradient-based quantum optimization. We present Quantum-circuit Alternating Controlled Koopman learning (QuACK), a novel framework that leverages an alternating algorithm for efficient prediction of gradient dynamics on quantum computers. We demonstrate QuACK's remarkable ability to accelerate gradient-based optimization across a range of applications in quantum optimization and machine learning. In fact, our empirical studies, spanning quantum chemistry, quantum condensed matter, quantum machine learning, and noisy environments, have shown accelerations of more than 200x speedup in the overparameterized regime, 10x speedup in the smooth regime, and 3x speedup in the non-smooth regime. With QuACK, we offer a robust advancement that harnesses the advantage of gradient-based quantum optimization for practical benefits.
- Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251–276, 1998.
- Qiskit: An open-source framework for quantum computing, 2021.
- Ergodic theory, dynamic mode decomposition, and computation of spectral properties of the koopman operator. SIAM Journal on Applied Dynamical Systems, 16(4):2096–2126, 2017.
- Forecasting sequential data using consistent koopman autoencoders. In International Conference on Machine Learning, pages 475–485. PMLR, 2020.
- Measurement error mitigation for variational quantum algorithms, 2020. URL https://arxiv.org/abs/2010.08520.
- Pennylane: Automatic differentiation of hybrid quantum-classical computations. arXiv preprint arXiv:1811.04968, 2018.
- Julia: A fresh approach to numerical computing. SIAM Review, 59(1):65–98, 2017. doi: 10.1137/141000671. URL https://epubs.siam.org/doi/10.1137/141000671.
- Quantum machine learning. Nature, 549(7671):195–202, 2017.
- Extracting spatial–temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition. Journal of neuroscience methods, 258:1–15, 2016.
- Chaos as an intermittently forced linear system. Nature communications, 8(1):1–9, 2017.
- Modern koopman theory for dynamical systems. arXiv preprint arXiv:2102.12086, 2021.
- Applied koopmanism. Chaos: An Interdisciplinary Journal of Nonlinear Science, 22(4), 2012.
- Encoding-dependent generalization bounds for parametrized quantum circuits. Quantum, 5:582, November 2021. ISSN 2521-327X. doi: 10.22331/q-2021-11-17-582. URL https://doi.org/10.22331/q-2021-11-17-582.
- Variational quantum algorithms. Nature Reviews Physics, 3(9):625–644, 2021.
- On the koopman operator of algorithms. SIAM Journal on Applied Dynamical Systems, 19(2):860–885, 2020.
- Optimizing neural networks via koopman operator theory. Advances in Neural Information Processing Systems, 33:2087–2097, 2020.
- Quantum reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 38(5):1207–1220, 2008.
- Principal component trajectories for modeling spectrally continuous dynamics as forced linear systems. Physical Review E, 105(1):015312, 2022.
- A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028, 2014.
- Effects of noise on the overparametrization of quantum neural networks. arXiv preprint arXiv:2302.05059, 2023.
- Learning to forecast dynamical systems from streaming data. SIAM Journal on Applied Dynamical Systems, 22(2):527–558, 2023. doi: 10.1137/21M144983X. URL https://doi.org/10.1137/21M144983X.
- Bilinear dynamic mode decomposition for quantum control. New Journal of Physics, 23(3):033035, mar 2021. doi: 10.1088/1367-2630/abe972. URL https://doi.org/10.1088%2F1367-2630%2Fabe972.
- Quantum approximate optimization of non-planar graph problems on a planar superconducting processor. Nature Physics, 17(3):332–336, Mar 2021. ISSN 1745-2481. doi: 10.1038/s41567-020-01105-y. URL https://doi.org/10.1038/s41567-020-01105-y.
- Supervised learning with quantum-enhanced feature spaces. Nature, 567(7747):209–212, mar 2019. doi: 10.1038/s41586-019-0980-2. URL https://doi.org/10.1038%2Fs41586-019-0980-2.
- Toward physically realizable quantum neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pages 6902–6909, 2022.
- Dynamic mode decomposition for large and streaming datasets. Physics of Fluids, 26(11), 2014.
- Quantum advantage in learning from experiments. Science, 376(6598):1182–1186, jun 2022a. doi: 10.1126/science.abn7293. URL https://doi.org/10.1126%2Fscience.abn7293.
- Provably efficient machine learning for quantum many-body problems. Science, 377(6613), sep 2022b. doi: 10.1126/science.abk3333. URL https://doi.org/10.1126%2Fscience.abk3333.
- Quantum machine learning beyond kernel methods, 2021. URL https://arxiv.org/abs/2110.13162.
- Time-delay observables for koopman: Theory and applications. SIAM Journal on Applied Dynamical Systems, 19(2):886–917, 2020.
- Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. nature, 549(7671):242–246, 2017.
- q-means: A quantum algorithm for unsupervised machine learning. Advances in Neural Information Processing Systems, 32, 2019.
- Learning to optimize variational quantum circuits to solve combinatorial problems. In Proceedings of the AAAI conference on artificial intelligence, volume 34, pages 2367–2375, 2020.
- Quantum-classical computation of schwinger model dynamics using quantum computers. Phys. Rev. A, 98:032331, Sep 2018. doi: 10.1103/PhysRevA.98.032331. URL https://link.aps.org/doi/10.1103/PhysRevA.98.032331.
- Koopman analysis of quantum systems. Journal of Physics A: Mathematical and Theoretical, 55(31):314002, jul 2022. doi: 10.1088/1751-8121/ac7d22. URL https://doi.org/10.1088/1751-8121/ac7d22.
- B. O. Koopman. Hamiltonian systems and transformation in hilbert space. Proceedings of the National Academy of Sciences, 17(5):315–318, 1931. doi: 10.1073/pnas.17.5.315. URL https://www.pnas.org/doi/abs/10.1073/pnas.17.5.315.
- Theory of overparametrization in quantum neural networks. arXiv preprint arXiv:2109.11676, 2021.
- Differentiable analog quantum computing for optimization and control. arXiv preprint arXiv:2210.15812, 2022.
- Visualizing the loss landscape of neural nets. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/a41b3bb3e6b050b6c9067c67f663b915-Paper.pdf.
- Quantum Neural Network Classifiers: A Tutorial. SciPost Phys. Lect. Notes, 61, 2022. doi: 10.21468/SciPostPhysLectNotes.61. URL https://scipost.org/10.21468/SciPostPhysLectNotes.61.
- Learning compositional koopman operators for model-based control. arXiv preprint arXiv:1910.08264, 2019.
- Credit assignment for trained neural networks based on koopman operator theory. arXiv preprint arXiv:2212.00998, 2022.
- Representation learning via quantum neural tangent kernels. PRX Quantum, 3(3), aug 2022. doi: 10.1103/prxquantum.3.030323. URL https://doi.org/10.1103%2Fprxquantum.3.030323.
- Analytic theory for the dynamics of wide quantum neural networks. Physical Review Letters, 130(15):150601, 2023.
- A rigorous and robust quantum speed-up in supervised machine learning. Nature Physics, 17(9):1013–1017, jul 2021. doi: 10.1038/s41567-021-01287-z. URL https://doi.org/10.1038%2Fs41567-021-01287-z.
- Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983, 2016.
- Yao.jl: Extensible, Efficient Framework for Quantum Algorithm Design. Quantum, 4:341, 2020. doi: 10.22331/q-2020-10-11-341. URL https://quantum-journal.org/papers/q-2020-10-11-341/.
- Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications, 9(1), nov 2018. doi: 10.1038/s41467-018-07210-0. URL https://doi.org/10.1038%2Fs41467-018-07210-0.
- Variational ansatz-based quantum simulation of imaginary time evolution. npj Quantum Information, 5(1):75, 2019.
- Igor Mezic. Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dynamics, 41(1):309–325, Aug 2005. ISSN 1573-269X. doi: 10.1007/s11071-005-2824-x. URL https://doi.org/10.1007/s11071-005-2824-x.
- Quantum circuit learning. Phys. Rev. A, 98:032309, Sep 2018. doi: 10.1103/PhysRevA.98.032309. URL https://link.aps.org/doi/10.1103/PhysRevA.98.032309.
- Koopman spectrum and stability of cascaded dynamical systems. The Koopman Operator in Systems and Control: Concepts, Methodologies, and Applications, pages 99–129, 2020.
- Predicting the critical number of layers for hierarchical support vector regression. Entropy, 23(1):37, 2020.
- Quantum optimization using variational algorithms on near-term quantum devices. Quantum Science and Technology, 3(3):030503, jun 2018. doi: 10.1088/2058-9565/aab822. URL https://doi.org/10.1088/2058-9565/aab822.
- A koopman approach to understanding sequence neural models. arXiv preprint arXiv:2102.07824, 2021.
- Yurii Nesterov. Introductory lectures on convex programming volume i: Basic course. Lecture notes, 3(4):5, 1998.
- Pytorch: An imperative style, high-performance deep learning library, 2019. URL https://arxiv.org/abs/1912.01703.
- A variational eigenvalue solver on a photonic quantum processor. Nature Communications, 5(1), jul 2014a. doi: 10.1038/ncomms5213. URL https://doi.org/10.1038%2Fncomms5213.
- A variational eigenvalue solver on a photonic quantum processor. Nature communications, 5(1):1–7, 2014b.
- An operator theoretic view on pruning deep neural networks. In International Conference on Learning Representations, 2021.
- Algorithmic (semi-) conjugacy via koopman operator theory. In 2022 IEEE 61st Conference on Decision and Control (CDC), pages 6006–6011. IEEE, 2022.
- Experimental quantum adversarial learning with programmable superconducting qubits, 2022a. URL https://arxiv.org/abs/2204.01738.
- Experimental quantum adversarial learning with programmable superconducting qubits. arXiv preprint arXiv:2204.01738, 2022b.
- Analyzing koopman approaches to physics-informed machine learning for long-term sea-surface temperature forecasting. arXiv preprint arXiv:2010.00399, 2020.
- Matrix-model simulations using quantum computing, deep learning, and lattice monte carlo. PRX Quantum, 3:010324, Feb 2022. doi: 10.1103/PRXQuantum.3.010324. URL https://link.aps.org/doi/10.1103/PRXQuantum.3.010324.
- Spectral analysis of nonlinear flows. Journal of fluid mechanics, 641:115–127, 2009.
- Generation of high-resolution handwritten digits with an ion-trap quantum computer. Phys. Rev. X, 12:031010, Jul 2022. doi: 10.1103/PhysRevX.12.031010. URL https://link.aps.org/doi/10.1103/PhysRevX.12.031010.
- Peter J Schmid. Dynamic mode decomposition of numerical and experimental data. Journal of fluid mechanics, 656:5–28, 2010.
- Evaluating analytic gradients on quantum hardware. Phys. Rev. A, 99:032331, Mar 2019. doi: 10.1103/PhysRevA.99.032331. URL https://link.aps.org/doi/10.1103/PhysRevA.99.032331.
- Variational quantum algorithm with information sharing. npj Quantum Information, 7(1):116, 2021.
- Learning to optimize with dynamic mode decomposition. In 2022 International Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2022.
- James C Spall. An overview of the simultaneous perturbation method for efficient optimization. Johns Hopkins apl technical digest, 19(4):482–492, 1998.
- Quantum Natural Gradient. Quantum, 4:269, May 2020. ISSN 2521-327X. doi: 10.22331/q-2020-05-25-269. URL https://doi.org/10.22331/q-2020-05-25-269.
- Stochastic gradient descent for hybrid quantum-classical optimization. Quantum, 4:314, August 2020. ISSN 2521-327X. doi: 10.22331/q-2020-08-31-314. URL https://doi.org/10.22331/q-2020-08-31-314.
- Floris Takens. Detecting strange attractors in turbulence. In David Rand and Lai-Sang Young, editors, Dynamical Systems and Turbulence, Warwick 1980, pages 366–381, Berlin, Heidelberg, 1981. Springer Berlin Heidelberg. ISBN 978-3-540-38945-3.
- Stochastic gradient line bayesian optimization for efficient noise-robust optimization of parameterized quantum circuits. npj Quantum Information, 8(1):90, 2022.
- Accelerating training in artificial neural networks with dynamic mode decomposition, 2020. URL https://arxiv.org/abs/2006.14371.
- The variational quantum eigensolver: a review of methods and best practices. Physics Reports, 986:1–128, 2022.
- On dynamic mode decomposition: Theory and applications. Journal of Computational Dynamics, 1(2):391–421, 2014.
- J. v. Neumann. Zur operatorenmethode in der klassischen mechanik. Annals of Mathematics, 33(3):587–642, 1932. ISSN 0003486X. URL http://www.jstor.org/stable/1968537.
- Learning to learn with quantum neural networks via classical neural networks. arXiv preprint arXiv:1907.05415, 2019.
- Symmetric pruning in quantum neural networks. arXiv preprint arXiv:2208.14057, 2022.
- Progress towards practical quantum variational algorithms. Physical Review A, 92(4), oct 2015. doi: 10.1103/physreva.92.042303. URL https://doi.org/10.1103%2Fphysreva.92.042303.
- A data–driven approximation of the koopman operator: Extending dynamic mode decomposition. Journal of Nonlinear Science, 25:1307–1346, 2015.
- Optimizing quantum heuristics with meta-learning. Quantum Machine Intelligence, 3:1–14, 2021.
- Monte carlo tree search based hybrid optimization of variational quantum circuits. In Mathematical and Scientific Machine Learning, pages 49–64. PMLR, 2022.
- A convergence theory for over-parameterized variational quantum eigensolvers. arXiv preprint arXiv:2205.12481, 2022.
- Analyzing convergence in quantum neural networks: Deviations from neural tangent kernels. arXiv preprint arXiv:2303.14844, 2023.
- Quantum approximate optimization algorithm: Performance, mechanism, and implementation on near-term devices. Physical Review X, 10(2):021067, 2020.