Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Bayesian Learning, Greedy agglomerative clustering approach and evaluation techniques for Author Name Disambiguation Problem (2211.01303v1)

Published 1 Nov 2022 in cs.DL and cs.LG

Abstract: Author names often suffer from ambiguity owing to the same author appearing under different names and multiple authors possessing similar names. It creates difficulty in associating a scholarly work with the person who wrote it, thereby introducing inaccuracy in credit attribution, bibliometric analysis, search-by-author in a digital library, and expert discovery. A plethora of techniques for disambiguation of author names has been proposed in the literature. I try to focus on the research efforts targeted to disambiguate author names. I first go through the conventional methods, then I discuss evaluation techniques and the clustering model which finally leads to the Bayesian learning and Greedy agglomerative approach. I believe this concentrated review will be useful for the research community because it discusses techniques applied to a very large real database that is actively used worldwide. The Bayesian and the greedy agglomerative approach used will help to tackle AND problems in a better way. Finally, I try to outline a few directions for future work

Summary

We haven't generated a summary for this paper yet.