Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Higher order convergence of perfectly matched layers in 3D bi-periodic surface scattering problems (2211.01222v1)

Published 2 Nov 2022 in math.NA, cs.NA, and math.AP

Abstract: The perfectly matched layer (PML) is a very popular tool in the truncation of wave scattering in unbounded domains. In Chandler-Wilde & Monk et al. 2009, the author proposed a conjecture that for scattering problems with rough surfaces, the PML converges exponentially with respect to the PML parameter in any compact subset. In the author's previous paper (Zhang et al. 2022), this result has been proved for periodic surfaces in two dimensional spaces, when the wave number is not a half integer. In this paper, we prove that the method has a high order convergence rate in the 3D bi-periodic surface scattering problems. We extend the 2D results and prove that the exponential convergence still holds when the wavenumber is smaller than $0.5$. For lareger wavenumbers, although exponential convergence is no longer proved, we are able to prove that a higher order convergence for the PML method.

Citations (1)

Summary

We haven't generated a summary for this paper yet.