Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Local Differentially Private Frequency Estimation based on Learned Sketches (2211.01138v2)

Published 31 Oct 2022 in cs.CR and cs.DB

Abstract: Sketches are widely used for frequency estimation of data with a large domain. However, sketches-based frequency estimation faces more challenges when considering privacy. Local differential privacy (LDP) is a solution to frequency estimation on sensitive data while preserving the privacy. LDP enables each user to perturb its data on the client-side to protect the privacy, but it also introduces errors to the frequency estimations. The hash collisions in the sketches make the estimations for low-frequent items even worse. In this paper, we propose a two-phase frequency estimation framework for data with a large domain based on an LDP learned sketch, which separates the high-frequent and low-frequent items to avoid the errors caused by hash collisions. We theoretically proved that the proposed method satisfies LDP and it is more accurate than the state-of-the-art frequency estimation methods including Apple-CMS, Apple-HCMS and FLH. The experimental results verify the performance of our method.

Citations (1)

Summary

We haven't generated a summary for this paper yet.