Papers
Topics
Authors
Recent
Search
2000 character limit reached

A highly accurate perfectly-matched-layer boundary integral equation solver for acoustic layered-medium problems

Published 2 Nov 2022 in math.NA and cs.NA | (2211.00892v1)

Abstract: Based on the perfectly matched layer (PML) technique, this paper develops a high-accuracy boundary integral equation (BIE) solver for acoustic scattering problems in locally defected layered media in both two and three dimensions. The original scattering problem is truncated onto a bounded domain by the PML. Assuming the vanishing of the scattered field on the PML boundary, we derive BIEs on local defects only in terms of using PML-transformed free-space Green's function, and the four standard integral operators: single-layer, double-layer, transpose of double-layer, and hyper-singular boundary integral operators. The hyper-singular integral operator is transformed into a combination of weakly-singular integral operators and tangential derivatives. We develop a high-order Chebyshev-based rectangular-polar singular-integration solver to discretize all weakly-singular integrals. Numerical experiments for both two- and three-dimensional problems are carried out to demonstrate the accuracy and efficiency of the proposed solver.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (4)

Collections

Sign up for free to add this paper to one or more collections.