Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Certified Robustness of Quantum Classifiers against Adversarial Examples through Quantum Noise (2211.00887v2)

Published 2 Nov 2022 in quant-ph, cs.LG, cs.NE, and eess.SP

Abstract: Recently, quantum classifiers have been found to be vulnerable to adversarial attacks, in which quantum classifiers are deceived by imperceptible noises, leading to misclassification. In this paper, we propose the first theoretical study demonstrating that adding quantum random rotation noise can improve robustness in quantum classifiers against adversarial attacks. We link the definition of differential privacy and show that the quantum classifier trained with the natural presence of additive noise is differentially private. Finally, we derive a certified robustness bound to enable quantum classifiers to defend against adversarial examples, supported by experimental results simulated with noises from IBM's 7-qubits device.

Citations (15)

Summary

We haven't generated a summary for this paper yet.