Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rarest-First with Probabilistic-Mode-Suppression (2211.00213v1)

Published 1 Nov 2022 in eess.SY and cs.SY

Abstract: Recent studies suggested that the BitTorrent's rarest-first protocol, owing to its work-conserving nature, can become unstable in the presence of non-persistent users. Consequently, for any provably stable protocol, many peers, at some point, would have to be endogenously forced to hold off their file-download activity. In this work, we propose a tunable piece-selection policy that minimizes this (undesirable) requisite by combining the (work-conserving but not stabilizing) rarest-first protocol with only an appropriate share of the (non-work conserving and stabilizing) mode-suppression protocol. We refer to this policy as ``Rarest-First with Probabilistic Mode-Suppression'' or simply RFwPMS. We study RFwPMS using a stochastic abstraction of the BitTorrent network that is general enough to capture a multiple swarm setting of non-persistent users -- each swarm having its own altruistic preferences that may or may not overlap with those of other swarms. Using Lyapunov drift analysis, we show that for all kinds of inter-swarm behaviors and all arrival-rate configurations, RFwPMS is stable. Then, using the Kingman's moment bound technique, we further show that the expected steady-state sojourn time of RFwPMS is independent of the arrival-rate in the single-swarm case (under a mild additional assumption). Finally, our simulation-based performance evaluation confirms our theoretical findings and shows that the steady-state expected sojourn time is linear in the file-size (compared to our loose estimate of a polynomial with degree 6). Overall, an improved performance is observed in comparison to previously proposed stabilizing schemes like mode-suppression (MS).

Summary

We haven't generated a summary for this paper yet.