Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Close Look into the Calibration of Pre-trained Language Models (2211.00151v3)

Published 31 Oct 2022 in cs.CL and cs.LG

Abstract: Pre-trained LLMs (PLMs) may fail in giving reliable estimates of their predictive uncertainty. We take a close look into this problem, aiming to answer two questions: (1) Do PLMs learn to become calibrated in the training process? (2) How effective are existing calibration methods? For the first question, we conduct fine-grained control experiments to study the dynamic change in PLMs' calibration performance in training. We consider six factors as control variables, including dataset difficulty, available training samples, training steps, the number of tunable parameters, model scale, and pretraining. We observe a consistent change in calibration performance across six factors. We find that PLMs don't learn to become calibrated in training, evidenced by the continual increase in confidence, no matter whether the predictions are correct or not. We highlight that our finding somewhat contradicts two established conclusions: (a) Larger PLMs are more calibrated; (b) Pretraining improves model calibration. Next, we study the effectiveness of existing calibration methods in mitigating the overconfidence issue. Besides unlearnable calibration methods (e.g., label smoothing), we adapt and extend two recently proposed learnable methods that directly collect data to train models to have reasonable confidence estimations. Experimental results show that learnable methods significantly reduce PLMs' confidence in wrong predictions. The code is available at \url{https://github.com/lifan-yuan/PLMCalibration}.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Yangyi Chen (29 papers)
  2. Lifan Yuan (22 papers)
  3. Ganqu Cui (39 papers)
  4. Zhiyuan Liu (433 papers)
  5. Heng Ji (266 papers)
Citations (36)

Summary

We haven't generated a summary for this paper yet.