Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Agent-Time Attention for Sparse Rewards Multi-Agent Reinforcement Learning (2210.17540v1)

Published 31 Oct 2022 in cs.LG and cs.MA

Abstract: Sparse and delayed rewards pose a challenge to single agent reinforcement learning. This challenge is amplified in multi-agent reinforcement learning (MARL) where credit assignment of these rewards needs to happen not only across time, but also across agents. We propose Agent-Time Attention (ATA), a neural network model with auxiliary losses for redistributing sparse and delayed rewards in collaborative MARL. We provide a simple example that demonstrates how providing agents with their own local redistributed rewards and shared global redistributed rewards motivate different policies. We extend several MiniGrid environments, specifically MultiRoom and DoorKey, to the multi-agent sparse delayed rewards setting. We demonstrate that ATA outperforms various baselines on many instances of these environments. Source code of the experiments is available at https://github.com/jshe/agent-time-attention.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jennifer She (9 papers)
  2. Jayesh K. Gupta (25 papers)
  3. Mykel J. Kochenderfer (215 papers)
Citations (4)