Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ensemble transport smoothing. Part II: Nonlinear updates (2210.17435v2)

Published 31 Oct 2022 in stat.ME, stat.CO, and stat.ML

Abstract: Smoothing is a specialized form of Bayesian inference for state-space models that characterizes the posterior distribution of a collection of states given an associated sequence of observations. Ramgraber et al. (2023) proposes a general framework for transport-based ensemble smoothing, which includes linear Kalman-type smoothers as special cases. Here, we build on this foundation to realize and demonstrate nonlinear backward ensemble transport smoothers. We discuss parameterization and regularization of the associated transport maps, and then examine the performance of these smoothers for nonlinear and chaotic dynamical systems that exhibit non-Gaussian behavior. In these settings, our nonlinear transport smoothers yield lower estimation error than conventional linear smoothers and state-of-the-art iterative ensemble Kalman smoothers, for comparable numbers of model evaluations.

Citations (4)

Summary

We haven't generated a summary for this paper yet.