Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PAGE: Prototype-Based Model-Level Explanations for Graph Neural Networks (2210.17159v2)

Published 31 Oct 2022 in cs.LG, cs.AI, cs.IT, cs.NE, cs.SI, and math.IT

Abstract: Aside from graph neural networks (GNNs) attracting significant attention as a powerful framework revolutionizing graph representation learning, there has been an increasing demand for explaining GNN models. Although various explanation methods for GNNs have been developed, most studies have focused on instance-level explanations, which produce explanations tailored to a given graph instance. In our study, we propose Prototype-bAsed GNN-Explainer (PAGE), a novel model-level GNN explanation method that explains what the underlying GNN model has learned for graph classification by discovering human-interpretable prototype graphs. Our method produces explanations for a given class, thus being capable of offering more concise and comprehensive explanations than those of instance-level explanations. First, PAGE selects embeddings of class-discriminative input graphs on the graph-level embedding space after clustering them. Then, PAGE discovers a common subgraph pattern by iteratively searching for high matching node tuples using node-level embeddings via a prototype scoring function, thereby yielding a prototype graph as our explanation. Using six graph classification datasets, we demonstrate that PAGE qualitatively and quantitatively outperforms the state-of-the-art model-level explanation method. We also carry out systematic experimental studies by demonstrating the relationship between PAGE and instance-level explanation methods, the robustness of PAGE to input data scarce environments, and the computational efficiency of the proposed prototype scoring function in PAGE.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com