Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

$A_\infty$-Algebras from Lie Pairs (2210.16769v2)

Published 30 Oct 2022 in math.DG, math.AG, and math.QA

Abstract: Given an inclusion $A\hookrightarrow L$ of Lie algebroids sharing the same base manifold $M$, i.e. a Lie pair, we prove that the space $\Gamma(\Lambda\bullet A\vee)\otimes_{R} \frac{U(L)}{U(L)\cdot\Gamma(A)}$, where $R=C\infty(M)$, admits an $A_\infty$-algebra structure, unique up to $A_\infty$-isomorphisms. As a consequence, the Chevalley-Eilenberg cohomology $H\bullet_{CE} \big( A, \frac{U(L)}{U(L)\cdot\Gamma(A)} \big)$ admits a canonical associative algebra structure. This $A_\infty$-algebra can be considered as the universal enveloping algebra of the $L_\infty$-algebroid $A[1]\times_M L/A$. Our construction is based on the homotopy equivalence of the $L_\infty$-algebroid $A[1]\times_M L/A$ and the dg Lie algebroid corresponding to the comma double Lie algebroid of Jotz-Mackenzie.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com