Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

token2vec: A Joint Self-Supervised Pre-training Framework Using Unpaired Speech and Text (2210.16755v1)

Published 30 Oct 2022 in cs.CL, cs.SD, and eess.AS

Abstract: Self-supervised pre-training has been successful in both text and speech processing. Speech and text offer different but complementary information. The question is whether we are able to perform a speech-text joint pre-training on unpaired speech and text. In this paper, we take the idea of self-supervised pre-training one step further and propose token2vec, a novel joint pre-training framework for unpaired speech and text based on discrete representations of speech. Firstly, due to the distinct characteristics between speech and text modalities, where speech is continuous while text is discrete, we first discretize speech into a sequence of discrete speech tokens to solve the modality mismatch problem. Secondly, to solve the length mismatch problem, where the speech sequence is usually much longer than text sequence, we convert the words of text into phoneme sequences and randomly repeat each phoneme in the sequences. Finally, we feed the discrete speech and text tokens into a modality-agnostic Transformer encoder and pre-train with token-level masking LLMing (tMLM). Experiments show that token2vec is significantly superior to various speech-only pre-training baselines, with up to 17.7% relative WER reduction. Token2vec model is also validated on a non-ASR task, i.e., spoken intent classification, and shows good transferability.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Xianghu Yue (14 papers)
  2. Junyi Ao (16 papers)
  3. Xiaoxue Gao (21 papers)
  4. Haizhou Li (285 papers)
Citations (8)