Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalized network density matrices for analysis of multiscale functional diversity (2210.16701v1)

Published 29 Oct 2022 in physics.soc-ph, cond-mat.stat-mech, and physics.bio-ph

Abstract: The network density matrix formalism allows for describing the dynamics of information on top of complex structures and it has been successfully used to analyze from system's robustness to perturbations to coarse graining multilayer networks from characterizing emergent network states to performing multiscale analysis. However, this framework is usually limited to diffusion dynamics on undirected networks. Here, to overcome some limitations, we propose an approach to derive density matrices based on dynamical systems and information theory, that allows for encapsulating a much wider range of linear and non-linear dynamics and richer classes of structure, such as directed and signed ones. We use our framework to study the response to local stochastic perturbations of synthetic and empirical networks, including neural systems consisting of excitatory and inhibitory links and gene-regulatory interactions. Our findings demonstrate that topological complexity does not lead, necessarily, to functional diversity -- i.e., complex and heterogeneous response to stimuli or perturbations. Instead, functional diversity is a genuine emergent property which cannot be deduced from the knowledge of topological features such as heterogeneity, modularity, presence of asymmetries or dynamical properties of a system.

Citations (10)

Summary

We haven't generated a summary for this paper yet.