Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast-Convergent Federated Learning via Cyclic Aggregation (2210.16520v1)

Published 29 Oct 2022 in cs.LG and eess.SP

Abstract: Federated learning (FL) aims at optimizing a shared global model over multiple edge devices without transmitting (private) data to the central server. While it is theoretically well-known that FL yields an optimal model -- centrally trained model assuming availability of all the edge device data at the central server -- under mild condition, in practice, it often requires massive amount of iterations until convergence, especially under presence of statistical/computational heterogeneity. This paper utilizes cyclic learning rate at the server side to reduce the number of training iterations with increased performance without any additional computational costs for both the server and the edge devices. Numerical results validate that, simply plugging-in the proposed cyclic aggregation to the existing FL algorithms effectively reduces the number of training iterations with improved performance.

Citations (2)

Summary

We haven't generated a summary for this paper yet.