Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Equivariant resolutions over Veronese rings (2210.16342v3)

Published 28 Oct 2022 in math.AC and math.CO

Abstract: Working in a polynomial ring $S=\mathbf{k}[x_1,\ldots,x_n]$ where $\mathbf{k}$ is an arbitrary commutative ring with $1$, we consider the $d{th}$ Veronese subalgebras $R=S{(d)}$, as well as natural $R$-submodules $M=S{(\geq r, d)}$ inside $S$. We develop and use characteristic-free theory of Schur functors associated to ribbon skew diagrams as a tool to construct simple $GL_n(\mathbf{k})$-equivariant minimal free $R$-resolutions for the quotient ring $\mathbf{k}=R/R_+$ and for these modules $M$. These also lead to elegant descriptions of $\mathrm{Tor}R_i(M,M')$ for all $i$ and $\mathrm{Hom}_R(M,M')$ for any pair of these modules $M,M'$.

Summary

We haven't generated a summary for this paper yet.