Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A CNN-LSTM Combination Network for Cataract Detection using Eye Fundus Images (2210.16093v1)

Published 28 Oct 2022 in cs.CV, cs.AI, and cs.LG

Abstract: According to multiple authoritative authorities, including the World Health Organization, vision-related impairments and disorders are becoming a significant issue. According to a recent report, one of the leading causes of irreversible blindness in persons over the age of 50 is delayed cataract treatment. A cataract is a cloudy spot in the eye's lens that causes visual loss. Cataracts often develop slowly and consequently result in difficulty in driving, reading, and even recognizing faces. This necessitates the development of rapid and dependable diagnosis and treatment solutions for ocular illnesses. Previously, such visual illness diagnosis were done manually, which was time-consuming and prone to human mistake. However, as technology advances, automated, computer-based methods that decrease both time and human labor while producing trustworthy results are now accessible. In this study, we developed a CNN-LSTM-based model architecture with the goal of creating a low-cost diagnostic system that can classify normal and cataractous cases of ocular disease from fundus images. The proposed model was trained on the publicly available ODIR dataset, which included fundus images of patients' left and right eyes. The suggested architecture outperformed previous systems with a state-of-the-art 97.53% accuracy.

Citations (4)

Summary

We haven't generated a summary for this paper yet.