Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parallel Self-Avoiding Walks for a Low-Autocorrelation Binary Sequences Problem (2210.15962v2)

Published 28 Oct 2022 in cs.DC and cs.DS

Abstract: A low-autocorrelation binary sequences problem with a high figure of merit factor represents a formidable computational challenge. An efficient parallel computing algorithm is required to reach the new best-known solutions for this problem. Therefore, we developed the $\mathit{sokol}{\mathit{skew}}$ solver for the skew-symmetric search space. The developed solver takes the advantage of parallel computing on graphics processing units. The solver organized the search process as a sequence of parallel and contiguous self-avoiding walks and achieved a speedup factor of 387 compared with $\mathit{lssOrel}$, its predecessor. The $\mathit{sokol}{\mathit{skew}}$ solver belongs to stochastic solvers and can not guarantee the optimality of solutions. To mitigate this problem, we established the predictive model of stopping conditions according to the small instances for which the optimal skew-symmetric solutions are known. With its help and 99% probability, the $\mathit{sokol}_{\mathit{skew}}$ solver found all the known and seven new best-known skew-symmetric sequences for odd instances from $L=121$ to $L=223$. For larger instances, the solver can not reach 99% probability within our limitations, but it still found several new best-known binary sequences. We also analyzed the trend of the best merit factor values, and it shows that as sequence size increases, the value of the merit factor also increases, and this trend is flatter for larger instances.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. doi:10.1016/j.jpdc.2018.11.012.
  2. doi:10.1016/j.jocs.2021.101538.
  3. doi:10.1016/j.jocs.2021.101339.
  4. doi:10.1016/j.jocs.2021.101422.
  5. doi:10.1109/COMST.2016.2639739.
  6. doi:10.1109/TSP.2016.2620113.
  7. doi:10.1109/LCOMM.2020.2977897.
  8. doi:10.1051/jphys:01987004804055900.
  9. doi:10.1088/1742-6596/613/1/012006.
  10. doi:10.1007/BF01165154.
  11. doi:10.1007/s10623-015-0104-4.
  12. doi:10.1088/1751-8113/49/16/165001.
  13. doi:10.1016/j.jcta.2016.08.006.
  14. doi:10.1016/j.jcta.2013.01.010.
  15. doi:10.17619/UNIPB/1-457.
  16. doi:10.1016/j.asoc.2017.02.024.
  17. doi:10.1109/ACCESS.2018.2789916.
  18. doi:10.1016/j.jocs.2019.01.007.
  19. M. Dimitrov, On the Skew-Symmetric Binary Sequences and the Merit Factor Problem (2021). doi:10.48550/ARXIV.2106.03377.
  20. doi:10.1109/TIT.1982.1056505.
  21. doi:10.1109/TIT.2011.2164778.
  22. doi:10.1109/ICOA.2018.8370526.
  23. doi:10.1016/j.asoc.2009.03.005.
  24. doi:10.13164/mendel.2022.2.017.
  25. doi:10.1016/j.jpdc.2012.05.004.
  26. doi:10.1016/j.jpdc.2012.02.020.
  27. doi:10.1016/j.jpdc.2012.01.002.
  28. doi:10.1016/j.jpdc.2012.01.003.
  29. doi:10.1016/j.jpdc.2012.02.019.
  30. doi:10.1016/j.jpdc.2012.02.018.
  31. doi:10.1016/j.jocs.2016.07.008.
  32. doi:10.1016/j.jpdc.2022.04.016.
  33. doi:10.1007/978-3-030-77961-0_18.
Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets