Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Antipode formulas for pattern Hopf algebras (2210.15778v1)

Published 27 Oct 2022 in math.CO

Abstract: The permutation pattern Hopf algebra is a commutative filtered and connected Hopf algebra. Its product structure stems from counting patterns of a permutation, interpreting the coefficients as permutation quasi-shuffles. The Hopf algebra was shown to be a free commutative algebra and to fit into a general framework of pattern Hopf algebras, via species with restrictions. In this paper we introduce the cancellation-free and grouping-free formula for the antipode of the permutation pattern Hopf algebra. To obtain this formula, we use the popular sign-reversing involution method, by Benedetti and Sagan. This formula has applications on polynomial invariants on permutations, in particular for obtaining reciprocity theorems. On our way, we also introduce the packed word patterns Hopf algebra and present a formula for its antipode. Other pattern algebras are discussed here, notably on parking functions, which recovers notions recently studied by Adeniran and Pudwell, and by Qiu and Remmel.

Summary

We haven't generated a summary for this paper yet.