Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-view Representation Learning from Malware to Defend Against Adversarial Variants (2210.15429v1)

Published 25 Oct 2022 in cs.CR, cs.AI, and cs.LG

Abstract: Deep learning-based adversarial malware detectors have yielded promising results in detecting never-before-seen malware executables without relying on expensive dynamic behavior analysis and sandbox. Despite their abilities, these detectors have been shown to be vulnerable to adversarial malware variants - meticulously modified, functionality-preserving versions of original malware executables generated by machine learning. Due to the nature of these adversarial modifications, these adversarial methods often use a \textit{single view} of malware executables (i.e., the binary/hexadecimal view) to generate adversarial malware variants. This provides an opportunity for the defenders (i.e., malware detectors) to detect the adversarial variants by utilizing more than one view of a malware file (e.g., source code view in addition to the binary view). The rationale behind this idea is that while the adversary focuses on the binary view, certain characteristics of the malware file in the source code view remain untouched which leads to the detection of the adversarial malware variants. To capitalize on this opportunity, we propose Adversarially Robust Multiview Malware Defense (ARMD), a novel multi-view learning framework to improve the robustness of DL-based malware detectors against adversarial variants. Our experiments on three renowned open-source deep learning-based malware detectors across six common malware categories show that ARMD is able to improve the adversarial robustness by up to seven times on these malware detectors.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. James Lee Hu (3 papers)
  2. Mohammadreza Ebrahimi (12 papers)
  3. Weifeng Li (18 papers)
  4. Xin Li (980 papers)
  5. Hsinchun Chen (15 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.