Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

HRTF Field: Unifying Measured HRTF Magnitude Representation with Neural Fields (2210.15196v3)

Published 27 Oct 2022 in eess.AS, cs.GR, and cs.SD

Abstract: Head-related transfer functions (HRTFs) are a set of functions describing the spatial filtering effect of the outer ear (i.e., torso, head, and pinnae) onto sound sources at different azimuth and elevation angles. They are widely used in spatial audio rendering. While the azimuth and elevation angles are intrinsically continuous, measured HRTFs in existing datasets employ different spatial sampling schemes, making it difficult to model HRTFs across datasets. In this work, we propose to use neural fields, a differentiable representation of functions through neural networks, to model HRTFs with arbitrary spatial sampling schemes. Such representation is unified across datasets with different spatial sampling schemes. HRTFs for arbitrary azimuth and elevation angles can be derived from this representation. We further introduce a generative model named HRTF field to learn the latent space of the HRTF neural fields across subjects. We demonstrate promising performance on HRTF interpolation and generation tasks and point out potential future work.

Citations (8)

Summary

We haven't generated a summary for this paper yet.