Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maximum likelihood estimation for left-truncated log-logistic distributions with a given truncation point (2210.15155v1)

Published 27 Oct 2022 in stat.ME, math.ST, stat.CO, and stat.TH

Abstract: The maximum likelihood estimation of the left-truncated log-logistic distribution with a given truncation point is analyzed in detail from both mathematical and numerical perspectives. These maximum likelihood equations often do not possess a solution, even for small truncations. A simple criterion is provided for the existence of a regular maximum likelihood solution. In this case a profile likelihood function can be constructed and the optimisation problem is reduced to one dimension. When the maximum likelihood equations do not admit a solution for certain data samples, it is shown that the Pareto distribution is the $L1$-limit of the degenerated left-truncated log-logistic distribution. Using this mathematical information, a highly efficient Monte Carlo simulation is performed to obtain critical values for some goodness-of-fit tests. The confidence tables and an interpolation formula are provided and several applications to real world data are presented.

Summary

We haven't generated a summary for this paper yet.