Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TPU-MLIR: A Compiler For TPU Using MLIR (2210.15016v2)

Published 23 Oct 2022 in cs.PL, cs.CL, and cs.LG

Abstract: Multi-level intermediate representations (MLIR) show great promise for reducing the cost of building domain-specific compilers by providing a reusable and extensible compiler infrastructure. This work presents TPU-MLIR, an end-to-end compiler based on MLIR that deploys pre-trained neural network (NN) models to a custom ASIC called a Tensor Processing Unit (TPU). TPU-MLIR defines two new dialects to implement its functionality: 1. a Tensor operation (TOP) dialect that encodes the deep learning graph semantics and independent of the deep learning framework and 2. a TPU kernel dialect to provide a standard kernel computation on TPU. A NN model is translated to the TOP dialect and then lowered to the TPU dialect for different TPUs according to the chip's configuration. We demonstrate how to use the MLIR pass pipeline to organize and perform optimization on TPU to generate machine code. The paper also presents a verification procedure to ensure the correctness of each transform stage.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Pengchao Hu (1 paper)
  2. Man Lu (1 paper)
  3. Lei Wang (975 papers)
  4. Guoyue Jiang (2 papers)
Citations (5)