Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reachability Verification Based Reliability Assessment for Deep Reinforcement Learning Controlled Robotics and Autonomous Systems (2210.14991v2)

Published 26 Oct 2022 in cs.RO and cs.AI

Abstract: Deep Reinforcement Learning (DRL) has achieved impressive performance in robotics and autonomous systems (RAS). A key challenge to its deployment in real-life operations is the presence of spuriously unsafe DRL policies. Unexplored states may lead the agent to make wrong decisions that could result in hazards, especially in applications where DRL-trained end-to-end controllers govern the behaviour of RAS. This paper proposes a novel quantitative reliability assessment framework for DRL-controlled RAS, leveraging verification evidence generated from formal reliability analysis of neural networks. A two-level verification framework is introduced to check the safety property with respect to inaccurate observations that are due to, e.g., environmental noise and state changes. Reachability verification tools are leveraged locally to generate safety evidence of trajectories. In contrast, at the global level, we quantify the overall reliability as an aggregated metric of local safety evidence, corresponding to a set of distinct tasks and their occurrence probabilities. The effectiveness of the proposed verification framework is demonstrated and validated via experiments on real RAS.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yogamani, and P. Pérez, “Deep reinforcement learning for autonomous driving: A survey,” IEEE Tran. on Intelligent Transp. Systems, 2021.
  2. J. D. Musa, “Operational profiles in software-reliability engineering,” IEEE software, vol. 10, no. 2, pp. 14–32, 1993.
  3. C. Huang, J. Fan, X. Chen, W. Li, and Q. Zhu, “POLAR: A polynomial arithmetic framework for verifying neural-network controlled systems,” in ATAV’22, 2022.
  4. Y.-Y. Yang, C. Rashtchian, H. Zhang, R. R. Salakhutdinov, and K. Chaudhuri, “A closer look at accuracy vs. robustness,” Advances in neural information processing systems, vol. 33, pp. 8588–8601, 2020.
  5. A. Pattanaik, Z. Tang, S. Liu, G. Bommannan, and G. Chowdhary, “Robust deep reinforcement learning with adversarial attacks,” in AAMAS’18, Richland, SC, 2018, p. 2040–2042.
  6. G. Dalal, K. Dvijotham, M. Vecerik, T. Hester, C. Paduraru, and Y. Tassa, “Safe exploration in continuous action spaces,” arXiv preprint arXiv:1801.08757, 2018.
  7. F. Berkenkamp, “Safe exploration in reinforcement learning: Theory and applications in robotics,” Ph.D. dissertation, ETH Zurich, 2019.
  8. M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and U. Topcu, “Safe reinforcement learning via shielding,” in Thirty-Second AAAI Conference on Artificial Intelligence, 2018.
  9. P. Van Wesel and A. E. Goodloe, “Challenges in the verification of reinforcement learning algorithms,” Tech. Rep., 2017.
  10. G. Amir, M. Schapira, and G. Katz, “Towards scalable verification of deep reinforcement learning,” in 2021 formal methods in computer aided design (FMCAD).   IEEE, 2021, pp. 193–203.
  11. T. Eliyahu, Y. Kazak, G. Katz, and M. Schapira, “Verifying learning-augmented systems,” in Proceedings of the 2021 ACM SIGCOMM 2021 Conference, 2021, pp. 305–318.
  12. M. Landers and A. Doryab, “Deep reinforcement learning verification: A survey,” ACM Computing Surveys, 2023.
  13. R. Ivanov, J. Weimer, R. Alur, G. J. Pappas, and I. Lee, “Verisig: verifying safety properties of hybrid systems with neural network controllers,” in Proc. of the 22nd ACM Int. Conf. on Hybrid Systems: Computation and Control, 2019, pp. 169–178.
  14. R. Ivanov, T. Carpenter, J. Weimer, R. Alur, G. Pappas, and I. Lee, “Verisig 2.0: Verification of neural network controllers using taylor model preconditioning,” in CAV’21.   Springer, 2021, pp. 249–262.
  15. S. Dutta, X. Chen, and S. Sankaranarayanan, “Reachability analysis for neural feedback systems using regressive polynomial rule inference,” in Proc. of the 22nd ACM Int. Conf. on Hybrid Systems: Computation and Control, 2019, pp. 157–168.
  16. J. Fan, C. Huang, X. Chen, W. Li, and Q. Zhu, “Reachnn*: A tool for reachability analysis of neural-network controlled systems,” in AVTA’20.   Springer, 2020, pp. 537–542.
  17. B. Wang, S. Webb, and T. Rainforth, “Statistically robust neural network classification,” in UAI’21, 2021, pp. 1735–1745.
  18. W. Ruan, X. Huang, and M. Kwiatkowska, “Reachability analysis of deep neural networks with provable guarantees,” in Proc. of the 27th Int. Joint Conf. on Artificial Intelligence, 2018, p. 2651–2659.
  19. C. Huang, J. Fan, W. Li, X. Chen, and Q. Zhu, “Reachnn: Reachability analysis of neural-network controlled systems,” ACM Transactions on Embedded Computing Systems, vol. 18, no. 5s, pp. 1–22, 2019.
  20. X. Huang, D. Kroening, W. Ruan, J. Sharp, Y. Sun, E. Thamo, M. Wu, and X. Yi, “A survey of safety and trustworthiness of deep neural networks: Verification, testing, adversarial attack and defence, and interpretability,” Computer Science Review, vol. 37, p. 100270, 2020.
  21. M. Althoff, “Reachability analysis and its application to the safety assessment of autonomous cars,” Ph.D. dissertation, Technische Universität München, 2010.
  22. Y. Qi, Y. Dong, S. Khastgir, P. Jennings, X. Zhao, and X. Huang, “Stpa for learning-enabled systems: a survey and a new practice,” in 26th Int. Conf. on Intelligent Transportation Systems.   IEEE, 2023.
  23. K. Makino and M. Berz, “Taylor models and other validated functional inclusion methods,” International Journal of Pure and Applied Mathematics, vol. 6, pp. 239–316, 2003.
  24. C. Smidts, C. Mutha, M. Rodriguez, and M. J. Gerber, “Software testing with an operational profile: Op definition,” ACM Comput. Surv., vol. 46, no. 3, 2014.
  25. N. Kalra and S. M. Paddock, “Driving to safety: How many miles of driving would it take to demonstrate autonomous vehicle reliability?” Trans. Research Part A: Policy & Practice, vol. 94, pp. 182–193, 2016.
  26. X. Zhao, V. Robu, D. Flynn, K. Salako, and L. Strigini, “Assessing the safety and reliability of autonomous vehicles from road testing,” in IEEE Int. Symp. on Softw. Reliability Engineering, 2019, pp. 13–23.
  27. R. Agarwal, M. Schwarzer, P. S. Castro, A. C. Courville, and M. Bellemare, “Deep reinforcement learning at the edge of the statistical precipice,” NeurIPS’21, vol. 34, pp. 29 304–29 320, 2021.
  28. Y. Dong, W. Huang, V. Bharti, V. Cox, A. Banks, S. Wang, X. Zhao, S. Schewe, and X. Huang, “Reliability assessment and safety arguments for machine learning components in system assurance,” ACM Transactions on Embedded Computing Systems, 2022.
  29. X. Zhao, W. Huang, A. Banks, V. Cox, D. Flynn, S. Schewe, and X. Huang, “Assessing the Reliability of Deep Learning Classifiers Through Robustness Evaluation and Operational Profiles,” in AISafety’21 Workshop at IJCAI’21, 2021.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yi Dong (46 papers)
  2. Xingyu Zhao (61 papers)
  3. Sen Wang (165 papers)
  4. Xiaowei Huang (121 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.