Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extracting Unique Information Through Markov Relations (2210.14789v1)

Published 26 Oct 2022 in cs.IT and math.IT

Abstract: We propose two new measures for extracting the unique information in $X$ and not $Y$ about a message $M$, when $X, Y$ and $M$ are joint random variables with a given joint distribution. We take a Markov based approach, motivated by questions in fair machine learning, and inspired by similar Markov-based optimization problems that have been used in the Information Bottleneck and Common Information frameworks. We obtain a complete characterization of our definitions in the Gaussian case (namely, when $X, Y$ and $M$ are jointly Gaussian), under the assumption of Gaussian optimality. We also examine the consistency of our definitions with the partial information decomposition (PID) framework, and show that these Markov based definitions achieve non-negativity, but not symmetry, within the PID framework.

Citations (7)

Summary

We haven't generated a summary for this paper yet.