Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Eeny, meeny, miny, moe. How to choose data for morphological inflection (2210.14465v1)

Published 26 Oct 2022 in cs.CL

Abstract: Data scarcity is a widespread problem in numerous NLP tasks for low-resource languages. Within morphology, the labour-intensive work of tagging/glossing data is a serious bottleneck for both NLP and language documentation. Active learning (AL) aims to reduce the cost of data annotation by selecting data that is most informative for improving the model. In this paper, we explore four sampling strategies for the task of morphological inflection using a Transformer model: a pair of oracle experiments where data is chosen based on whether the model already can or cannot inflect the test forms correctly, as well as strategies based on high/low model confidence, entropy, as well as random selection. We investigate the robustness of each strategy across 30 typologically diverse languages. We also perform a more in-depth case study of Nat\"ugu. Our results show a clear benefit to selecting data based on model confidence and entropy. Unsurprisingly, the oracle experiment, where only incorrectly handled forms are chosen for further training, which is presented as a proxy for linguist/language consultant feedback, shows the most improvement. This is followed closely by choosing low-confidence and high-entropy predictions. We also show that despite the conventional wisdom of larger data sets yielding better accuracy, introducing more instances of high-confidence or low-entropy forms, or forms that the model can already inflect correctly, can reduce model performance.

Citations (12)

Summary

We haven't generated a summary for this paper yet.