Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Flattened Parking Functions (2210.14206v2)

Published 25 Oct 2022 in math.CO

Abstract: A permutation of length $n$ is called a flattened partition if the leading terms of maximal chains of ascents (called runs) are in increasing order. We analogously define flattened parking functions: a subset of parking functions for which the leading terms of maximal chains of weak ascents (also called runs) are in weakly increasing order. For $n\leq 8$, where there are at most four runs, we give data for the number of flattened parking functions, and it remains an open problem to give formulas for their enumeration in general. We then specialize to a subset of flattened parking functions that we call $\mathcal{S}$-insertion flattened parking functions. These are obtained by inserting all numbers of a multiset $ \mathcal{S}$ whose elements are in $[n]={1,2,\ldots,n}$, into a permutation of $[n]$ and checking that the result is flattened. We provide bijections between $\mathcal{S}$-insertion flattened parking functions and $\mathcal{S}'$-insertion flattened parking functions, where $\mathcal{S}$ and $\mathcal{S}'$ have certain relations. We then further specialize to the case $\mathcal{S}=\textbf{1}_r$, the multiset with $r$ ones, and we establish a bijection between $\textbf{1}_r$-insertion flattened parking functions and set partitions of $[n+r]$ with the first $r$ integers in different subsets.

Summary

We haven't generated a summary for this paper yet.